Advancements in ophthalmic imaging for better understanding of pachychoroid spectrum diseases: perspective

Authors

  • Eva Wai Nam Wong Department of Ophthalmology, Caritas Medical Centre https://orcid.org/0000-0002-6221-0906
  • Robert Fung Lam Department of Ophthalmology, Caritas Medical Centre
  • Frank Hiu Ping Lai Department of Ophthalmology, Caritas Medical Centre

Keywords:

Central serous chorioretinopathy, Choroidal neovascularization, Computed tomography angiography, Fluorescein angiography, Tomography, optical coherence

Abstract

Pachychoroid disease spectrum encompasses entities with pathogenesis of choroidal circulatory dysfunction. Advancements in ophthalmic imaging enables better understanding of its structural and functional implications. This perspective article covers clinical features, ocular imaging findings, and management options of pachychoroid spectrum diseases including central serous chorioretinopathy, pachychoroid pigment epitheliopathy, pachychoroid neovasculopathy, polypoidal choroidal vasculopathy or aneurysmal type 1 neovascularization, focal choroidal excavation, and peripapillary pachychoroid syndrome.

References

Borooah S, Sim PY, Phatak S, et al. Pachychoroid spectrum disease. Acta Ophthalmol 2021;99:e806-e22.

Spraul CW, Lang GE, Grossniklaus HE, Lang GK. Histologic and morphometric analysis of the choroid, Bruch's membrane, and retinal pigment epithelium in postmortem eyes with age-related macular degeneration and histologic examination of surgically excised choroidal neovascular membranes. Surv Ophthalmol 1999;44(Suppl 1):S10-32.

Yiu G, Pecen P, Sarin N, et al. Characterization of the choroid-scleral junction and suprachoroidal layer in healthy individuals on enhanced-depth imaging optical coherence tomography. JAMA Ophthalmol 2014;132:174-81.

Cheung CMG, Lee WK, Koizumi H, et al. Pachychoroid disease. Eye (Lond) 2019;33:14-33.

Lee CO, Zhang X, Yuan N, et al. Comparison of choroidal thickness measurements between spectral domain optical coherence tomography and swept source optical coherence tomography in children. Sci Rep 2021;11:13749.

Mrejen S, Spaide RF. Optical coherence tomography: imaging of the choroid and beyond. Surv Ophthalmol 2013;58:387-429.

Safi H, Ahmadieh H, Hassanpour K, Safi S. Multimodal imaging in pachychoroid spectrum. Surv Ophthalmol 2021.

Dansingani KK, Balaratnasingam C, Naysan J, Freund KB. En face imaging of pachychoroid spectrum disorders with swept-source optical coherence tomography. Retina 2016;36:499-516.

Warrow DJ, Hoang QV, Freund KB. Pachychoroid pigment epitheliopathy. Retina 2013;33:1659-72.

Pang CE, Freund KB. Pachychoroid neovasculopathy. Retina 2015;35:1-9.

Matsumoto H, Hoshino J, Mukai R, et al. Chronic choriocapillaris ischemia in dilated vortex vein region in pachychoroid neovasculopathy. Sci Rep 2021;11:16274.

Spaide RF, Gemmy Cheung CM, Matsumoto H, et al. Venous overload choroidopathy: a hypothetical framework for central serous chorioretinopathy and allied disorders. Prog Retin Eye Res 2022;86:100973.

Spaide RF, Ledesma-Gil G. Choriocapillaris vascular parameters in normal eyes and those with pachychoroid with and without disease. Retina 2021;41:679-85.

Pang CE, Shah VP, Sarraf D, Freund KB. Ultra-widefield imaging with autofluorescence and indocyanine green angiography in central serous chorioretinopathy. Am J Ophthalmol 2014;158:362-71 e2.

Pereira A, Aldrees S, Pimentel MC, Yan P. Updated review: optical coherence tomography findings of the pachychoroid disease spectrum. Can J Ophthalmol 2022.

van Velthoven ME, Verbraak FD, Garcia PM, et al. Evaluation of central serous retinopathy with en face optical coherence tomography. Br J Ophthalmol 2005;89:1483-8.

van Rijssen TJ, van Dijk EHC, Yzer S, et al. Central serous chorioretinopathy: Towards an evidence-based treatment guideline. Prog Retin Eye Res 2019;73:100770.

How AC, Koh AH. Angiographic characteristics of acute central serous chorioretinopathy in an Asian population. Ann Acad Med Singap 2006;35:77-9.

Chhablani J, Cohen FB, Central Serous Chorioretinopathy International Group. Multimodal imaging-based central serous chorioretinopathy classification. Ophthalmol Retina 2020;4:1043-6.

Haga F, Maruko R, Sato C, et al. Long-term prognostic factors of chronic central serous chorioretinopathy after half-dose photodynamic therapy: a 3-year follow-up study. PLoS One 2017;12:e0181479.

van Dijk EHC, Fauser S, Breukink MB, et al. Half-dose photodynamic therapy versus high-density subthreshold micropulse laser treatment in patients with chronic central serous chorioretinopathy: the PLACE Trial. Ophthalmology 2018;125:1547-55.

Bousquet E, Beydoun T, Rothschild PR, et al. Spironolactone for nonresolving central serous chorioretinopathy: a randomized controlled crossover study. Retina 2015;35:2505-15.

Lotery A, Sivaprasad S, O'Connell A, et al. Eplerenone for chronic central serous chorioretinopathy in patients with active, previously untreated disease for more than 4 months (VICI): a randomised, double-blind, placebo-controlled trial. Lancet 2020;395:294-303.

Zhang X, Sivaprasad S. Drusen and pachydrusen: the definition, pathogenesis, and clinical significance. Eye (Lond) 2021;35:121-33.

Mazzeo T, Leber HM, da Silva AG, et al. Pachychoroid disease spectrum: review article. Graefes Arch Clin Exp Ophthalmol 2021.

Tanaka K, Mori R, Wakatsuki Y, et al. Two-thirds dose photodynamic therapy for pachychoroid neovasculopathy. J Clin Med 2021;10:?-?.

Sato T, Kishi S, Watanabe G, et al. Tomographic features of branching vascular networks in polypoidal choroidal vasculopathy. Retina 2007;27:589-94.

Bonini Filho MA, de Carlo TE, Ferrara D, et al. Association of choroidal neovascularization and central serous chorioretinopathy with optical coherence tomography angiography. JAMA Ophthalmol 2015;133:899-906.

Dansingani KK, Balaratnasingam C, Klufas MA, et al. Optical coherence tomography angiography of shallow irregular pigment epithelial detachments in pachychoroid spectrum disease. Am J Ophthalmol 2015;160:1243-54 e2.

Miki A, Kusuhara S, Otsuji T, et al. Photodynamic therapy combined with anti-vascular endothelial growth factor therapy for pachychoroid neovasculopathy. PLoS One 2021;16:e0248760.

Hikichi T, Kubo N, Yamauchi M. One-year comparison of anti-vascular endothelial growth factor and half-dose photodynamic therapies for pachychoroid neovasculopathy. Eye (Lond) 2021;35:3367-75.

Karasu B, Celebi ARC. An efficacy comparison of combination of different anti-vascular endothelial growth factors and photodynamic therapy in patients with pachychoroid neovasculopathy. Int Ophthalmol 2021;41:1989-2000.

Kitajima Y, Maruyama-Inoue M, Ito A, et al. One-year outcome of combination therapy with intravitreal anti-vascular endothelial growth factor and photodynamic therapy in patients with pachychoroid neovasculopathy. Graefes Arch Clin Exp Ophthalmol 2020;258:1279-85.

Miyake M, Ooto S, Yamashiro K, et al. Pachychoroid neovasculopathy and age-related macular degeneration. Sci Rep 2015;5:16204.

Padron-Perez N, Arias L, Rubio M, et al. Changes in choroidal thickness after intravitreal injection of anti-vascular endothelial growth factor in pachychoroid neovasculopathy. Invest Ophthalmol Vis Sci 2018;59:1119-24.

Matsumoto H, Hiroe T, Morimoto M, et al. Efficacy of treat-and-extend regimen with aflibercept for pachychoroid neovasculopathy and type 1 neovascular age-related macular degeneration. Jpn J Ophthalmol 2018;62:144-50.

Jung BJ, Kim JY, Lee JH, et al. Intravitreal aflibercept and ranibizumab for pachychoroid neovasculopathy. Sci Rep 2019;9:2055.

Sartini F, Figus M, Casini G, et al. Pachychoroid neovasculopathy: a type-1 choroidal neovascularization belonging to the pachychoroid spectrum-pathogenesis, imaging and available treatment options. Int Ophthalmol 2020;40:3577-89.

Coscas G, Yamashiro K, Coscas F, et al. Comparison of exudative age-related macular degeneration subtypes in Japanese and French patients: multicenter diagnosis with multimodal imaging. Am J Ophthalmol 2014;158:309-18 e2.

Yoon J, Yoon W, Na SK, et al. Long-term outcome of intravitreal anti-vascular endothelial growth factor treatment for pachychoroid neovasculopathy. Sci Rep 2021;11:12052.

Cheung CMG, Lai TYY, Teo K, et al. Polypoidal choroidal vasculopathy: consensus nomenclature and non-indocyanine green angiograph diagnostic criteria from the Asia-Pacific Ocular Imaging Society PCV Workgroup. Ophthalmology 2021;128:443-52.

Cheung CMG, Lai TYY, Ruamviboonsuk P, et al. Polypoidal choroidal vasculopathy: definition, pathogenesis, diagnosis, and management. Ophthalmology 2018;125:708-24.

Tan CS, Ngo WK, Lim LW, et al. EVEREST study report 3: diagnostic challenges of polypoidal choroidal vasculopathy. Lessons learnt from screening failures in the EVEREST study. Graefes Arch Clin Exp Ophthalmol 2016;254:1923-30.

Cheung CMG, Yanagi Y, Mohla A, et al. Characterization and differentiation of polypoidal choroidal vasculopathy using swept source optical coherence tomography angiography. Retina 2017;37:1464-74.

Huang CH, Yeh PT, Hsieh YT, et al. Characterizing branching vascular network morphology in polypoidal choroidal vasculopathy by optical coherence tomography angiography. Sci Rep 2019;9:595.

Lim TH, Lai TYY, Takahashi K, et al. Comparison of ranibizumab with or without verteporfin photodynamic therapy for polypoidal choroidal vasculopathy: the EVEREST II randomized clinical trial. JAMA Ophthalmol 2020;138:935-42.

Lee WK, Iida T, Ogura Y, et al. Efficacy and safety of intravitreal aflibercept for polypoidal choroidal vasculopathy in the PLANET Study: a randomized clinical trial. JAMA Ophthalmol 2018;136:786-93.

Wong TY, Ogura Y, Lee WK, et al. Efficacy and safety of intravitreal aflibercept for polypoidal choroidal vasculopathy: two-year results of the aflibercept in polypoidal choroidal vasculopathy study. Am J Ophthalmol 2019;204:80-9.

Chaikitmongkol V, Cheung CMG, Koizumi H, et al. Latest developments in polypoidal choroidal vasculopathy: epidemiology, etiology, diagnosis, and treatment. Asia Pac J Ophthalmol (Phila) 2020;9:260-8.

Margolis R, Mukkamala SK, Jampol LM, et al. The expanded spectrum of focal choroidal excavation. Arch Ophthalmol 2011;129:1320-5.

Castro-Navarro V, Behar-Cohen F, Chang W, et al. Pachychoroid: current concepts on clinical features and pathogenesis. Graefes Arch Clin Exp Ophthalmol 2021;259:1385-400.

Lim FP, Loh BK, Cheung CM, et al. Evaluation of focal choroidal excavation in the macula using swept-source optical coherence tomography. Eye (Lond) 2014;28:1088-94.

Lim FP, Wong CW, Loh BK, et al. Prevalence and clinical correlates of focal choroidal excavation in eyes with age-related macular degeneration, polypoidal choroidal vasculopathy and central serous chorioretinopathy. Br J Ophthalmol 2016;100:918-23.

Phasukkijwatana N, Freund KB, Dolz-Marco R, et al. Peripapillary pachychoroid syndrome. Retina 2018;38:1652-67.

Iovino C, Peiretti E, Tatti F, et al. Photodynamic therapy as a treatment option for peripapillary pachychoroid syndrome: a pilot study. Eye (Lond) 2022;36:716-23.

Xu D, Garg E, Lee K, et al. Long-term visual and anatomic outcomes of patients with peripapillary pachychoroid syndrome. Br J Ophthalmol 2022;106:576-81.

Downloads

Published

2022-12-29

How to Cite

1.
Wong EWN, Lam RF, Lai FHP. Advancements in ophthalmic imaging for better understanding of pachychoroid spectrum diseases: perspective. Hong Kong J Ophthalmol [Internet]. 2022Dec.29 [cited 2023Feb.3];26(2). Available from: https://hkjo.hk/index.php/hkjo/article/view/316

Issue

Section

Perspective