Ultrasound biomicroscopy of filtration blebs

Jeffrey M Liebmann, MD, Celso Tello, MD, Douglas Grayson, MD, Thomas Chi, MD, Robert Ritch, MD
The Departments of Ophthalmology, the New York Eye and Ear Infirmary, New York, NY, USA
and New York Medical College, Valhalla, NY, USA.

Correspondence and reprint requests: Jeffrey M Liebmann, MD, Glaucoma Service, the New York Eye and Ear Infirmary, 310 East 14th Street, New York, NY 10003, USA.

Acknowledgment
Supported in part by an award from the Fight for Sight Research Division of Prevent Blindness America (Celso Tello, MD).
New York Glaucoma Research Institute, New York, NY, USA; and the Department of Ophthalmology Research Fund of the New York Eye and Ear Infirmary.

Abstract
Aim: To assess the internal anatomy of filtering blebs in vivo.

Materials and methods: We performed high-resolution, high-frequency ultrasound biomicroscopy on filtration blebs with a range of clinical appearances to evaluate the internal ostium, scleral flap, and subconjunctival space in each type of bleb.

Results: Diffuse, spongy, thin-walled and cystic, encapsulated, and failed blebs were successfully imaged without morbidity. The pattern of subconjunctival aqueous flow was assessed and sites of blockage to flow determined.

Conclusion: Improved knowledge of the internal structure of filtration blebs should allow us to recognize earlier stages of bleb failure and characteristics of nonfunctional blebs with the intent of manipulating bleb structure to establish or improve function.

Key words: Ultrasound biomicroscopy, Filtration, Trabeculectomy, Bleb

Introduction
Filtration blebs vary widely in their clinical appearance. Blebs following successful trabeculectomy characteristically have a diffuse, spongy appearance, while those following full-thickness surgery or adjunctive antifibrosis chemotherapy are typically more thin-walled and cystic. Encapsulated blebs tend to be elevated and localized, with or without prominent surface vessels. Failed blebs are often totally flat and vascularized. The clinical appearance of a bleb is not always an accurate predictor of functional status. Rather than being static structures, blebs are dynamic, and remodeling takes place over time.

Relatively little attention has been paid to those characteristics of blebs in the early postoperative period that predict surgical success or failure. Similarly, the structure of established blebs, the nature of remodeling, and improved localization of sites of failure (ostium, sclera, episclera and bleb perimeter) need further investigation.

Management of failing filtration blebs is often unrewarding, despite the empirical use of digital compression, suture lysis, bleb needling, surgical revision, and antifibrotic agents. Correlation of in vivo characteristics of bleb structure with functional status and the ability to determine clinically the site of obstruction in failing or failed blebs should help to
predict the future status of the bleb and lead to interventional procedures for those blebs that appear to be in early stages of functional decline.

High-frequency anterior segment ultrasound biomicroscopy (UBM; Zeiss-Humphrey, San Leandro, CA, USA) is capable of imaging in vivo anterior segment structures at resolutions approaching 50 µm. It has been used to examine normal and glaucomatous eyes and is proving useful in the elucidation of anatomic mechanisms underlying various types of pathology of the anterior segment.

We examined a variety of successful and failed blebs to evaluate the morphologic features revealed by UBM.

Materials and methods

The equipment and techniques of ultrasound biomicroscopy as developed by Pavlin et al. have been previously described. In general, higher-frequency transducers produce increased resolution of more superficial structures, while lower-frequency ones are used when increased depth of penetration is necessary. With our unit, scanning is performed using a 50-MHz transducer, giving tissue penetration of 4 mm with resolution of approximately 50 µm.

UBM was performed under topical anesthesia using an eye cup and saline solution as the coupling medium. All scanning was performed with the patient in the supine position under standardized room lighting conditions. Multiple cross-sectional images were taken of the anterior segment and the bleb, from the limbus to its posterior extent. The internal ostium and scleral flap were imaged. The image that displayed maximal bleb elevation was used for measurements. Bleb height and wall thickness were measured using calipers provided in the system software.

Results

Twenty-three blebs of 21 patients were scanned in a nonmasked fashion. There were 15 white and 6 black patients. Sixteen eyes had primary open-angle glaucoma, 4 had exfoliative glaucoma, 2 had uveitic glaucoma, and 1 had chronic angle-closure glaucoma. All eyes had received postoperative 5-fluorouracil injections. There were 7 fornix-based and 16 limbus-based conjunctival flaps.

Five blebs were considered to be type 1 (Figures 1A and 1B), 10 were type 2 (Figures 2A and 2B), 6 were type 3 (Figures 3A and 3B), and 2 were type 4 (Figures 4A and 4B). The results of the UBM measurements are shown in the Table 1.
were differences in the thickness of the overlying conjunctiva, bleb walls were relatively uniform in echo
density. A patent internal ostium and the scleral flap could be
imaged in all eyes.

Figure 2A. Clinical photograph of a typical type 2 bleb, showing
diffuse subconjunctival flow and ischemia 5 months after
limbus-based trabeculectomy with 5-fluorouracil injections.
The IOP was 13 mmHg.

Figure 2B. UBM reveals a multi-chambered bleb that is also
loculated, but with a thicker conjunctival wall than the one
shown in Figure 1B. There was no visible communication
between the 2 areas in any of the UBM images. B indicates bleb.

Discussion

The detailed appearance of filtration blebs has not been
extensively studied. Blebs can be categorized according to
morphology (cystic and elevated or diffuse and shallow),
function (underfiltering or overfiltering), and degree of conjunctival inflammation. Diffuse,
cystic, and often vascularized. Encapsulated blebs appear as
elevated, localized, thick-walled cysts and may have
prominent surface vessels. Although the spectrum of
bleb appearance varies widely, successful filtration is
characterized by several common features: elevation of the
conjunctiva off the surface of the episclera, relative pallor or
ischemia of the overlying conjunctiva, and conjunctival
microcystic edema.

The anatomy of the aqueous outflow pathway in clinically
successful blebs could be visualized. Functional cystic and
diffuse blebs had differences in UBM morphology, which
 correlated with clinical appearances. The bleb walls were
thinner in cystic blebs than in diffuse blebs. In all eyes with
successful filtration, an echo-free area was present in the
subconjunctival space.

Figure 3A. Clinical photograph of a typical type 3 bleb, showing
flattened conjunctiva with prominent overlying vessels 6
months after fornix-based trabeculectomy with 5-fluorouracil.
No bleb is evident. The IOP was 23 mmHg on maximally
tolerated antiglaucoma medications. The overlying conjunctiva
was flat and vascularized.

Figure 3B. UBM shows a patent internal ostium with a filtration
track into the episcleral region, with no subconjunctival
reservoir. S indicates sclera; I, internal ostium; F, filtration
track; C, cornea; cb, ciliary body.
Previous measurements of bleb walls have been made in vitro. The wall thickness correlated with the clinical description of functioning blebs. In our UBM images, there were cystic areas within some of the blebs, predominantly in the type 1 blebs. This appears to be more prevalent amongst the cystic blebs, where septated and loculated areas within the blebs could be seen. Theoretically, this may represent remodeling and formation of connective tissue and elastic fibers, although the correlation of these alterations with bleb function is unclear. There have been morphologic and histopathologic studies of the microcystic changes in the bleb wall and within the bleb. Some have suggested that aqueous flow into the subconjunctival space separates the subconjunctival tissue to multiple small pockets. These small cystic structures give rise to relative transparent blebs containing multiloculated cysts. The different amount of aqueous flow in the subconjunctival tissue in the early postoperative period has been hypothesized to be responsible for the appearance of a cystic or a diffuse bleb.

The UBM appearance of filtering blebs following trabeculectomy with adjunctive mitomycin C was described by Yamamoto et al., Sakuma, and Kitazawa, who created a bleb classification system based on UBM appearance. Blebs with low internal reflectivity tended to have better IOP and required fewer antiglaucoma medications. In addition, the route under the scleral flap could be clearly visualized in 81 of 82 eyes with good pressure control, compared with only 21 of 35 eyes with fair or poor control. Although our classification system was based on clinical appearance rather than UBM appearance, the UBM features of functional, encapsulated, and failed blebs were similar between the 2 studies. For example, blebs with good IOP control in our series had thinner walls and lower internal reflectivity and encapsulated blebs were characterized by elevation and a thicker external wall.

Bleb encapsulation (Tenon cyst) develops in approximately 10% to 13% of eyes following trabeculectomy. A histopathological study of Tenon cyst walls revealed fibroblastic proliferation of Tenon capsule that was acellular. Risk factors for development of bleb encapsulation have been thought to include postoperative hypotony, flat anterior chamber, postoperative hyphema, age younger than 35 years, and previous intraocular surgery. UBM showed a discrete cystic encapsulation with an echoluent area between the conjunctiva and outer cyst wall possibly representing an area of subconjunctival aqueous flow.

In the vast majority of cases, external blockage is the cause of bleb failure. In the 6 failed blebs imaged, the internal ostia were patent with a filtration space beneath the scleral flap (Figure 3B). There was no filtration track at the external entrance of the scleral flap, suggesting that the blockage of aqueous outflow appears to be at the level of the episclera.

![Figure 4A. Clinical photograph of a typical type 4 bleb, showing a raised but encapsulated bleb. The IOP was 23 mm Hg after the administration of a topical beta-blocker.](image)

![Figure 4B. UBM showed the cyst wall to be bilayered, possibly representing an area of subconjunctival flow. The scleral flap is approximately half thickness. T indicates Tenon cyst wall; S, scleral flap; I, internal ostium; F, filtration track; C, cornea; and cb, ciliary body.](image)

Table 1. Bleb Height, Wall Thickness, and Intraocular (IOP).

<table>
<thead>
<tr>
<th>Bleb Type</th>
<th>IOP, mmHg</th>
<th>Bleb Height, mm</th>
<th>Conjunctival Wall Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Cystic (n=5)</td>
<td>8.4 ± 2.1</td>
<td>1.7 ± 1.0</td>
<td>0.19 ± 0.12</td>
</tr>
<tr>
<td>2: Diffuse (n=10)</td>
<td>13.6 ± 2.1</td>
<td>0.84 ± 0.37</td>
<td>0.34 ± 0.2</td>
</tr>
<tr>
<td>3: Flat (n=6)</td>
<td>24.4 ± 4.8</td>
<td>0</td>
<td>0.47 ± 0.08</td>
</tr>
<tr>
<td>4: Encapsulated (n=2)</td>
<td>15.0 ± 1.0</td>
<td>1.60 ± 0.20</td>
<td>0.20 ± 0.02</td>
</tr>
</tbody>
</table>

*In cases in which no bleb was present, the thickness of the conjunctiva overlying the apex of the scleral flap was measured.

Values are given as the mean (± SD). Values in parentheses are the range.
The UBM images obtained are potentially clinically useful by helping to determine the cause of filtration failure, so that therapy may be appropriately directed. Blockage at the level of the conjunctiva-Tenon fascia-episcleral interface may respond to transconjunctival bleb needling, whereas blockage beneath the scleral flap may require more extensive surgical revision. Improved knowledge of the internal structure of filtration blebs should allow us to recognize earlier stages of bleb failure and characteristics of nonfunctional blebs with the idea of manipulating bleb structure to establish or improve function. We are currently investigating the possibility of local surgical revision under direct ultrasonographic guidance to resurrect failing filtration blebs in an attempt to avoid reoperation at a different site.

References