What is in a posterior chamber intraocular lens? A review of the basic properties, materials and designs

Jasmine K.M. Lam, MRCSEd, Allie Lee, MRCSEd, FCOpth HK, FHKAM (Ophthalmology),
Victoria W.Y. Wong, MMedSc, FCOpth HK, FHKAM (Ophthalmology)
Hong Kong Eye Hospital; Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China

Correspondence and reprint requests:
Dr. Jasmine K.M. Lam, Hong Kong Eye Hospital, 147K Argyle Street, Kowloon, Hong Kong SAR, China.
Email: jasminelamkm@gmail.com

Abstract

There is a vast array of posterior chamber intraocular lenses on the market with different materials and designs. Materials used for an intraocular lens can be divided into hydrophobic and hydrophilic. Hydrophobic materials include polymethyl methacrylate, foldable hydrophobic acrylic and silicone. Hydrophilic materials include hydrophilic acrylic and collamer. The intraocular lens can be three-piece or one-piece, open-loop or plate-haptic. Different designs are also adopted to reduce posterior capsular opacification, reduce optical aberrations, filter light of unwanted or harmful wavelengths, and correct astigmatism and presbyopia. In this review, we summarize the existing literature on common materials and designs used for currently available posterior chamber intraocular lenses. It is hoped that this will facilitate surgeons in choosing an appropriate intraocular lens for their patients.

Key words: Biocompatible materials; Lens implantation, intraocular; Posterior eye segment; Prosthesis design

Introduction

With the current vast number of choices of posterior chamber intraocular lenses (IOL) on the market, it is important to understand the different properties of IOL materials and designs in order to choose a suitable IOL. From a patient’s point of view, an ideal IOL should provide good visual acuity over a wide range of distances with minimal aberration and glare, and long-term stability and safety at a low cost. Surgeons will have additional considerations that include ease of handling and insertion through a small incision, intraocular biocompatibility, minimal bacterial and fungal adherence, availability of diopter range and incremental range, low posterior capsule opacification (PCO) rate, filtration of unwanted wavelengths and minimization of various optical aberrations.

Materials of intraocular lens

IOL materials are hydrophobic or hydrophilic based on the angle at which a water droplet falls on the surface of the lens (Table 1). Hydrophobic materials repel water and result in a greater contact angle with water. Hydrophilic materials combine or attract water and result in a more acute contact angle with water. Amon classified the biocompatibility of IOL as uveal or capsular. Uveal biocompatibility refers to the reaction of uveal tissue to the IOL, the body’s natural immunologic response to a foreign object involving macrophages and foreign body giant cells. Capsular biocompatibility refers to the reaction of the residual lens epithelial cells (LEC) to the IOL. Proliferation of LEC on the anterior and posterior capsules leads to capsular opacities. Excessive proliferation is defined as low capsular biocompatibility.

Hydrophobic IOL materials include polymethyl methacrylate (PMMA), foldable hydrophobic acrylic and silicone, while hydrophilic materials include hydrophilic...
acrylic and collamer. PMMA, foldable hydrophobic acrylic, hydrophilic acrylic and collamer are all acrylic polymers and copolymers. The mechanical properties of acrylic polymers change with temperature. At low temperatures, they are rigid and glass-like, and at high temperatures they are soft and fluid-like. This change occurs within a narrow temperature range, with the mid-point known as the ‘glass transition temperature’, and is important for foldable IOL. The glass transition temperature of PMMA is between 118.8°C and 113.5°C, so that at room temperature, PMMA is rigid and glass-like. The glass transition temperature of foldable hydrophobic acrylic IOL is typically below room temperature between 15.5°C and 14°C so they are foldable for insertion into the eye where it unfolds into its original shape.13 Silicone is between –91.7°C and –119.6°C but has rubber-like characteristics at room temperature and unfolds rapidly within the eye. Hydrophilic acrylic lenses have values between 111.2°C and 95.9°C in a dehydrated state but become soft and elastic when hydrated.

Polymethyl methacrylate

PMMA is a rigid, transparent material with a refractive index of 1.49. It is inherently hydrophobic but can undergo heparin surface modification (HSM) to become hydrophilic.

Advantages of PMMA include its high uveal biocompatibility, allowance for surface modification, good centration and resistance to tilt due to its rigidity, low cost and rare occurrence of glistenings.15 Nonetheless, it requires a large incision due to its rigidity and is also brittle, has a higher risk of injuring the corneal endothelium, and is less tolerant to Nd:YAG laser damage during laser capsulotomy procedures.14 It is currently used in extracapsular cataract extraction, scleral-fixated and anterior chamber IOL.

Foldable hydrophobic acrylic

Foldable hydrophobic acrylic is a series of copolymers of acrylate and methacrylate derived from rigid PMMA. The first foldable hydrophobic acrylic IOL was introduced onto the market in 1993 as the AcrySof three-piece IOL (Alcon Laboratories, Fort Worth [TX], USA). This material has become the most popular IOL material worldwide. Foldable hydrophobic acrylic IOL come in three-piece or one-piece designs, and have a refractive index of 1.44 to 1.55. Their advantages include lower PCO rate,1-3 ease of manipulation as they are less slippery, a high refractive index that allows for a thinner optic, good resistance to Nd:YAG laser14,15 and a relatively low risk of silicone oil condensation.16 The minimum incision size for hydrophobic acrylic IOL is 2.2 mm, between that of silicone and hydrophilic acrylic IOL. Hydrophobic acrylic IOL can be associated with more glare and photopsia postoperatively than other materials due to their low anterior curvature and higher refractive index,17,18 and more common occurrence of glistening.13 ‘Glistening’ describes the phenomenon in which aqueous humor penetrates the IOL and water microvacuoles develop within the IOL optic giving an appearance of small bright crystals (Figure 1). In the majority of cases, this does not result in any significant visual alterations, although it can be associated with nighttime glare and reduced contrast sensitivity.19 To overcome this drawback, new materials have been introduced that are pre-hydrated to equilibrium water content so that they will not accept any further water. An example is the enVista MX60 (Bausch and Lomb Incorporated, Rochester [NY], USA) [Figure 2].20 There

<table>
<thead>
<tr>
<th>Table 1. Commonly used materials for intraocular lens.1-11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>Polymethyl methacrylate</td>
</tr>
<tr>
<td>Foldable hydrophobic acrylic</td>
</tr>
<tr>
<td>Hydrophilic acrylic</td>
</tr>
<tr>
<td>Silicone</td>
</tr>
<tr>
<td>Collamer</td>
</tr>
</tbody>
</table>

* Based on individual studies but no significant differences shown in meta-analysis.1-11

Figure 1. Slit-lamp photo of glistening of acyclic intraocular lens.
have been two case reports of significant surface deposits during implantation of a foldable hydrophobic acrylic IOL, leading to explantation.21,22 The deposits were noted immediately after the IOL was injected into the anterior chamber and could not be entirely removed by irrigation and aspiration. Subsequent analysis of the explanted IOL suggested that the deposits might have resulted from crystallization of the ophthalmic viscoelastic device used during loading of the IOL into the cartridges. The authors proposed that the ophthalmic viscoelastic device could have dried out and precipitated on the IOL while still inside the cartridge, and the adhesive nature of hydrophobic acrylic may make removal of precipitates from the IOL surface difficult.21

Hydrophilic acrylic

Hydrophilic acrylic was introduced as a material for IOL in the 1980s. It comprises a mixture of hydroxyethylmethacrylate (HEMA) and hydrophobic acrylic monomer and is a heterogeneous group with highly variable water content. In hydrophilic acrylic IOL, the lower the water content, the greater the refractive index and resistance. The typical refractive index is 1.43 but newer materials have been developed that have different refractive indices, such as Akreos Adapt Advanced Optic (AO) lens (Bausch and Lomb Incorporated, Rochester [NY], USA), a copolymer of HEMA with incorporation of PMMA with a refractive index of 1.46. Two key advantages of hydrophilic acrylic IOL are their superior mechanical properties and theoretically higher uveal biocompatibility. They are softer and more compressible than hydrophobic acrylic, and hence can be implanted through a smaller incision. They are also easier to handle with a low tendency for scratch marks, and a lower risk of capsular bag damage during implantation. They are also more resistant to Nd:YAG laser15 and have lower damage potential when touching the corneal endothelium. Hydrophilic acrylic IOL, however, have a higher PCO rate1-3 that can be due to adherence of water molecules to the IOL surface, and lower adhesiveness to the capsule. The softer nature also makes them weaker with lower resistance to capsular bag contraction, and may not be ideal if high contraction force is anticipated, as in some eyes with pseudoxfoliation syndrome. Postoperative optic opacification of hydrophilic acrylic IOL, now rarely reported, was a significant complication leading to large-scale explantation of a hydrogel lens, Hydroview IOL (Bausch and Lomb Incorporated, Rochester [NY], USA). First used in 1999, the problems usually occurred months to years later, and appeared as fine opaque granules deposited on the surface and within the IOL optic.22,23 It was probably caused by a deposition of calcium and phosphate salts but the exact mechanism was unknown. It was observed to be more common in patients with systemic conditions such as diabetes mellitus and hypertension, and may have been due to the associated metabolic imbalance, altered fluid dynamics of the aqueous or breakdown of the blood-aqueous barrier.22,23 Although optic opacification is now rare with newer materials of hydrophilic acrylic IOL, there have been some case reports of opacification of Akreos Adapt AO IOL; all of which occurred in patients with diabetes.24-26 Silicone oil adherence to hydrophilic acrylic had been reported to be lower than that for PMMA, hydrophobic acrylic and silicone IOL.16-27 Nonetheless, calcification in hydrophilic acrylic IOL in eyes with silicone oil has been reported.28 There has also been one case report of blue discoloration of a hydrophilic acrylic IOL (Acqua; Mediphacos, Belo Horizonte, Brazil) by intraoperative trypan blue. Acqua IOL was manufactured from hydrophilic acrylic material with a high water content (73.5\%) and was implanted in a dry state. Hydration therefore depended on fluids in the capsular bag and hence could possibly absorb the dye during intraocular expansion.29 Laboratory testing with various IOL materials showed that only hydrophilic acrylic IOL could significantly absorb commonly used capsular dyes.30

Silicone

Silicone IOL are made from polymers of silicone and oxygen. They are hydrophobic with a refractive index of 1.41 to 1.46. Although silicone IOL are mechanically flexible, they are less commonly used nowadays due to their various drawbacks, including the lower refractive index and hence thicker optics and larger incision size, difficulty in manipulation because they are slippery when wet, abrupt opening inside the anterior chamber, problem of glistenings, more posterior and anterior capsular opacification compared with acrylic IOL,12 low resistance to damage by Nd:YAG laser24 and importantly, irreversible adherence of silicone droplets.16,27,31 They are thus relatively contraindicated in patients at risk of vitreoretinal surgery such as those with diabetic retinopathy or highly myopia. They were also suspected to favor bacterial adhesion.32 Although rare, there have been case reports of calcifications of silicone IOL in asteroid hyalosis, and tan-brown discoloration in older models.22 Despite its drawbacks, the silicone light-adjustable lens is an exciting technology that allows spherical and even cylindrical power to be adjusted postoperatively. They contain silicone macromers that contain an ultraviolet light–activated photoinitiator. Curvature of the lens can be changed by activation of the photoreactive components by a special ultraviolet light causing polymerization in the area.

Figure 2. Prehydrated hydrophobic acrylic intraocular lens enVista MX60 (Bausch and Lomb Incorporated, Rochester [NY] USA).
of exposure so that unpolymerized macromers will diffuse into the area of treatment down a diffusion gradient. It is currently in phase 3 studies in the USA.33

Collamer
Collamer derives its name from the combination of collagen and polymer. It is made of a HEMA copolymer combined with a hydrophilic porcine collagen (<0.1%). It is hydrophilic and has a refractive index of 1.45. It is used exclusively in making STAAR phakic and aphakic lenses (STAAR Surgical, Monrovia [CA], USA), including the Visian Implantable Collamer lens (STAAR Surgical, Monrovia [CA], USA). Similar to hydrophilic acrylic, they have a high uveal biocompatibility34,35 and are easy to implant due to their softness and gentle unfolding. Theoretically, the collagen in collamer attracts fibronectin that forms a layer around the IOL to promote adhesion between the collagen-containing capsule and the LEC as well as between the LEC and the IOL to prevent PCO.36

Material properties of intraocular lens

Capsular biocompatibility
In terms of PCO rates, the IOL material is less important than the sharp edge design. Various studies have reported higher PCO rates with hydrophilic acrylic IOL.1,3,5 A European study of 1525 patients reported PCO and Nd:YAG capsulotomy rates to be the highest in hydrophilic acrylic, followed by PMMA, silicone and hydrophobic acrylic in decreasing order.1 A Cochrane review of interventions for preventing PCO, however, showed no significant differences in PCO rates between different IOL optic materials.2 The sandwich theory, which described the prevention of further epithelial ingrowth by a sealed sandwich structure formed by a monolayer of LEC bonding to both the posterior capsule and a bioactive IOL material, could theoretically account for the difference in PCO rates across different IOL materials. Foldable hydrophobic acrylic has a higher degree of bioadhesiveness, that is, the degree of adhesion of the capsule to the IOL surface, than hydrophilic acrylic, PMMA and silicone,6,9 hence the low PCO rate. Studies that compared electron microscope images of hydrophobic and hydrophilic acrylic IOL also reported a sharper edge with hydrophobic acrylic IOL that may be related to the manufacturing process.39,41

Uveal biocompatibility
Hydrophilic materials are theoretically more uveal biocompatible than hydrophobic materials,36-38 because IOL will be surrounded by aqueous humor intraocularly, and the reduced electrostatic forces and cellular adhesion may prevent attraction of inflammatory cells and adhesion of fibroblasts to the surface of IOL.39,40 A recent Cochrane review evaluating IOL in uveitic eyes, however, did not report any significant differences in uveal biocompatibility between hydrophobic and hydrophilic IOL.41,42 Heparin coating can theoretically reduce postoperative inflammation due to the anticoagulant and anti-inflammatory effects of heparin. Nonetheless, results of whether HSM PMMA gave better outcomes in uveitic eyes compared with non-modified PMMA were conflicting, with some reporting better outcomes with HSM PMMA IOL and some reporting no statistically significant differences.40,41,43 A randomized clinical trial comparing postoperative inflammation and capsular reaction in eyes that received heparin-coated foldable acrylic IOL and same IOL without heparin coating also failed to demonstrate any significant differences between the two groups.44 Nevertheless, the number of reviews is limited. Studies have involved small numbers and there is insufficient evidence to show that any IOL material is superior to another for uveitic eyes that have to undergo cataract surgery.

Bacterial adherence
Hydrophilic-hydrophobic interactions may influence bacterial adhesion to IOL and may be associated with infection risk. Since postoperative endophthalmitis is rare, an extremely large sample size would be required to draw reliable conclusions. Epidemiological studies of the contribution of IOL materials have reported conflicting results. Some studies reported that polypropylene haptics and unmodified PMMA were associated with higher postoperative endophthalmitis rates.35,46 Experimental studies reported that hydrophobic IOL such as silicone or acrylic hydrophobic IOL were more permissive to bacterial adhesion and growth than hydrophilic IOL.32 A multicenter study by the European Society of Cataract & Refractive Surgeons also identified silicone IOL as one of the risk factors associated with postoperative endophthalmitis.47 The results of these studies should be interpreted with caution because bacterial adhesion and endophthalmitis are complicated processes affected by many other factors such as operating technique, and ocular and systemic risk factors.

Designs of intraocular lenses
Posterior chamber IOL can have many different designs. Common designs include three-piece or one-piece, and open-loop or plate-haptic.

Three-piece intraocular lenses
Three-piece IOL consist of an optic and two open ‘C-loop’ haptics that are made of different materials, with the haptics inserted into two holes at the optic border. The optic can be made of PMMA, silicone or acrylic, while the haptic can be made of PMMA, polyvinylidene fluoride or polyamide. Polypropylene has previously been used for haptics but has since been abandoned because of postoperative degradation. Disadvantages of a three-piece IOL include risk of damage to the haptics when injected with an injector and hence possible need for a bigger incision than one-piece IOL, and possible brusque movements of the haptics during unfolding that may cause posterior capsular rupture. Advantages include their suitability for sulcus implantation in cases with posterior capsular rupture and good capsular fixation.

One-piece intraocular lenses
One-piece IOL are produced from a single step with optics
and haptics made of the same material. Some newer models also incorporate additional materials into the haptics, such as PMMA to the tip of the haptic in Hoya iSert 251 (HOYA Surgical Optics, Tokyo, Japan) [Figure 3]. One-piece IOL are more resistant to damage when implanted with injectors, and facilitate a smaller incision compared with three-piece IOL. One-piece IOL are not for sulcus placement due to the risk of iris chafing by the thick, square haptics.45 There have been concerns about the broad haptic-optic transition on one-piece IOL leading to interrupted square edge and increased risk of PCO, but studies have not shown any differences in PCO rates between one-piece and multi-piece IOL.46-48 Most new designs, e.g. Tecnis (Abbott Medical Optics Inc, Santa Ana [CA], USA), incorporate a 360° square edge (Figure 4). One-piece IOL can have open loop or plate haptics. One-piece IOL with plate haptics were used in one of the first foldable IOL (Figure 5). They permit a small incision and can be rotated clockwise and counterclockwise, an advantage especially for toric IOL. A major drawback is the incomplete fusion between anterior and posterior capsules along the plate-haptic axis and consequent lack of capsule bending at the optic edge theoretically allowing LEC migration and increasing the risk of PCO. Dislocation into the vitreous cavity by capsular bag contraction following posterior capsulotomy is also possible.48 Plate-style haptics are now used in some hydrophilic IOL, collamer and silicone IOL, sometimes combined with small loop-like haptics to improve centration. Some designs use a combination of plate-style and open-loop haptics to allow adaptation to different bag sizes and reduce PCO rates. Other designs have multiple haptics to improve stability and centration in the capsular bag, such as Akreos Adapt AO IOL (Bausch and Lomb Incorporated) [Figure 6].

Designs to reduce posterior capsular opacification

PCO is the most frequent complication of cataract surgery, affecting 20% to 40% of patients postoperatively.49,50 Although it can be easily treated by Nd:YAG laser capsulotomy, this will incur additional costs and the laser procedure has potential complications such as intraocular pressure spike, intraocular inflammation, IOL pitting and damage, cystoid macular edema, retinal break and retinal

Figure 3. Incorporation of polymethyl methacrylate to the tip of the haptic in Hoya iSert 251 (HOYA Surgical Optics, Tokyo, Japan).

Figure 4. 360° square edge of Tecnis intraocular lens (Abbott Medical Optics Inc, Santa Ana [CA], USA).

Figure 5. A multifocal intraocular lens with plate-haptic design.

Figure 6. Four-haptic design of Akreos Adapt Advanced Optic intraocular lens (Bausch and Lomb Incorporated, Rochester [NY], USA).
after implantation, is different for plus- or minus-power IOL. The principal planes of the IOL and the effective lens position is determined by the A constant, which characterizes the position of the optic as the IOL power changes from plus to minus, the geometric relationships between the anterior and posterior curvatures. Some designs to minimize the glare include a rounded anterior edge such as Sensar AR40 (Allergan Surgical, Irvine [CA], USA), and frosted edge in Tecnis ZCB00 (Abbott Medical Optics Inc, Santa Ana [CA], USA).

Optic shape
Currently, most optics of IOL are biconvex with different relationships between the anterior and posterior curvatures. The biconvex design aims to increase the contact surface with the posterior capsule to decrease the risk of PCO. The geometry of the IOL changes significantly with IOL power and some low- or minus-power lenses have a meniscus design. Optic shape directly affects the position of the principal planes of the IOL. With the change in shape of the optic as the IOL power changes from plus to minus, the principal planes shift from one side to the other and hence the A constant, which characterizes the position of the principal planes of the IOL and the effective lens position after implantation, is different for plus- or minus-power IOL.

Table 2. Intraocular lens designs to minimize posterior capsule opacification.

<table>
<thead>
<tr>
<th>Design</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Square optic edge</td>
<td>Prevent lens epithelial cells migration, pressure atrophy, contact inhibition</td>
</tr>
<tr>
<td>Biconvex-shaped optic</td>
<td>Increase contact surface with posterior capsule</td>
</tr>
<tr>
<td>Forward angulation / offset of haptics</td>
<td>Maintain backward position of the optic to improve contact with posterior capsule</td>
</tr>
</tbody>
</table>

Optic edge
In terms of IOL design, the most important modification is the square optic edge. The square optic edge design, initially a result of the manufacturing process rather than a deliberate attempt to decrease PCO, was clearly demonstrated in several studies including a Cochrane review to significantly lower PCO rate and Nd:YAG rate compared with round-edged IOL of any material. The possible mechanisms include prevention of LEC migration, pressure atrophy and contact inhibition. The advantage is reduced if the capsulorrhexis is larger than the optic as the pressure exerted by the IOL on PCO will be reduced. Nonetheless a square edge, especially when combined with a high refractive index, was reported to cause persistent ‘edge-glare phenomenon’. The optic disturbance was due to the sharp edge causing light rays that are refracted from the periphery of the IOL to be more intense on the peripheral retina, while a round edge disperses light rays over a larger surface area of the retina and hence causes less glare. Some designs to minimize the glare include a rounded anterior edge such as Sensar AR40 (Allergan Surgical, Irvine [CA], USA), and frosted edge in Tecnis ZCB00 (Abbott Medical Optics Inc, Santa Ana [CA], USA).

Angulation of haptics
Some haptics have a forward angulation of 5° to 10° and this can theoretically maintain the backward position of the optic to lower the risk of iris contact and allow a greater contact area with the posterior capsule. Studies, however, have failed to demonstrate a significant reduction in IOL-posterior capsule distance or superior PCO-inhibiting effect.

Reduction of aberrations
Optical aberrations are classified into different orders based on the complexity of the shape of the wavefront emerging through the pupil. With a spherical lens, the rays that pass through the periphery do not converge on the same point as those that pass through the center. With an aspheric lens, the radius of the curvature of the lens from the center to the periphery is modified so that all rays focus on a single point. Spherical aberration decreases contrast, especially at large pupils, causing problems with activities such as night driving. The shape of the cornea itself causes a positive spherical aberration. When the crystalline lens is healthy, transparent and flexible, it naturally causes negative aberration and compensates for the positive corneal spherical aberration. With aging, the spherical aberration caused by the lens becomes increasingly positive and the total aberration of the optical system increases. An aspheric IOL has a modified prolate anterior surface. They are either neutral concerning spherical aberration, which means they induce zero spherical aberration, and do not add any spherical aberration to the eye, e.g. SofPort Advanced Optics (Bausch and Lomb Incorporated, Rochester [NY], USA); or they induce negative spherical aberration that neutralizes the positive corneal spherical aberration. Designs with a highly prolate anterior surface induce a more negative spherical aberration in an attempt to negate all the corneal spherical aberration and produce a pseudophakic eye with zero spherical aberration, e.g. Tecnis ZCB00 (Abbott Medical Optics, Santa Ana [CA], USA), which indices –0.27 microns of spherical aberration. Some designs take into account that a low positive spherical aberration has been reported to be associated with ‘supernormal’ visual abilities, and aim to leave the pseudophakic eye with a low positive spherical aberration. An example is Acrysof IQ (Alcon Laboratories, Fort Worth [TX], USA) that induces –0.20 microns of spherical aberration.

In reality, the impact of addressing asphericity is very small relative to correcting spherical error and astigmatism, hence patients are unlikely to notice any difference if they are not emmetropic. Unless the patient has a postoperative
refractive error of plano or chooses to wear spectacles to correct the residual refractive error, they are unlikely to appreciate the difference of an aspheric IOL. Studies using aspheric IOL have not shown any difference in best-corrected visual acuity, although some have shown better contrast sensitivity and performance in nighttime driving simulation testing.58

Centration is another concern with some aspheric IOL. Spherical IOL do not create major problems if they decenter as they add positive spherical aberration to the optical system. IOL that are neutral concerning spherical aberration have the same power in the center and at every point out to the periphery, so if they decenter they too will not confound any existing aberrations. Nonetheless, IOL that induce negative spherical aberration will induce a significant amount of coma even with low degrees of decentration or tilting. If there are concerns about IOL decentration after implantation, such as in cases of posterior capsular rupture, a standard IOL or IOL with neutral spherical aberration will be preferable.

Previous corneal surgeries may also affect the corneal spherical aberration. Patients with previous hyperopic LASIK will have a negative corneal spherical aberration while patients with previous myopic LASIK will have a more positive corneal spherical aberration. The former will benefit from a traditional spherical IOL and the latter from a negative spherical aberration IOL.

Filtering unwanted wavelengths

All IOL now filter ultraviolet light by incorporating ultraviolet light–absorbing materials because ultraviolet light is potentially toxic to the retina. Blue light–filtering IOL have also added yellow chromophore to block blue wavelength light (400–460 nm). In-vitro and animal studies have suggested that blocking short-wavelength light might be beneficial in protecting the retina. A small study reported reduced geographical atrophy in eyes with blue light–filtering IOL, but epidemiological studies regarding blue light–filtering IOL and age-related macular degeneration are still lacking. Some studies suggested a reduction in glare with blue light–filtering IOL. With regard to visual performance of clear or blue light–filtering IOL, the majority of studies have reported similar visual acuity, photopic, scotopic and color vision performance. The incidence of cyanopsia, where the patient notices a blue tinge to vision after surgery, has been reported to be less during the initial postoperative period in patients with blue light–filtering IOL, but no difference was reported in clear or blue light–filtering IOL at 3 months, suggesting adaptation over time. A minority of patients reported subjective differences in color and contrast perception when one eye had a blue light–filtering IOL and the other eye had a clear IOL. It may be safer to match the other eye if one is operated on with or without blue light filter. Studies have also shown no significant differences between clear and blue–light filtering IOL in terms of effect on circadian rhythm and sleep–wake cycle, effect on optical coherence tomography imaging and visual field testing, or intraoperative impediment and postoperative outcomes in combined cataract and vitreoretinal surgery.

Correcting astigmatism

Toric IOL effectively neutralize pre-existing corneal astigmatism in cataract patients at the time of surgery. Systematic reviews have shown promising clinical outcomes in toric IOL implantation, in particular superior uncorrected distance visual acuity, greater spectacle independence and lower amounts of residual astigmatism compared with non-toric IOL. Currently, a wide range of models of toric IOL is commercially available, for example, AcrySof IQ Toric and AcrySof IQ ReSTOR multifocal toric (Alcon Laboratories, Fort Worth [TX], USA), Tecnis Toric (Abbott Medical Optics, Inc, Santa Ana [CA], USA), Trulign Toric (Bausch and Lomb Incorporated, Rochester [NY], USA), Staar Toric (Staar Surgical, Monrovia [CA], USA), etc. Toric IOL are made of hydrophobic acrylic, hydrophilic acrylic, silicone or PMMA biomaterials.

Accurate axis placement of the toric IOL is key to achieving good refractive outcome as 3.3% of toric correction is lost for every degree off the desired axis. Being 30° off axis will result in complete loss of astigmatic correction. Toric IOL have a marking on the optic to guide alignment with the steep axis of the cornea, and should be marked with the patient seated as the eye may undergo cyclotorsion when the patient assumes a supine position. Innovative intraoperative wavefront aberrometry, iris fingerprinting, limbal registration and other surgical guidance systems can improve the accuracy of alignment. Rotational stability, especially when the capsular bag contracts and the anterior and posterior capsular surfaces fuse, is also crucial for toric IOL efficiency. Toric IOL design and materials have been shown to play a role. A randomized controlled trial demonstrated that one-piece acrylic toric IOL had better rotational stability than a plate-haptic silicone toric IOL.

Correcting presbyopia

Accommodative function of the natural lens is lost after cataract surgery and as a consequence, spectacles will be required for near vision if standard monofocal IOL are used. Presbyopia-correcting IOL have been developed to overcome this loss of accommodation. Multifocal IOL and accommodating IOL are in this armamentarium.

Multifocal intraocular lenses

Multifocal IOL are designed to overcome a lack of accommodation by dividing the incoming light onto two or more focal points for distance, near or intermediate vision. The two broad categories of multifocal IOL are diffractive and refractive lenses. Diffractive multifocal IOL utilize diffractive zones across the lens surface to create different focal points. They can be further enhanced via apodization to allow for progressive variation across the zones, in order to improve efficiency and optimize quality of vision achieved. Refractive multifocal IOL work by incorporating different powers into circular refractive zones.
ReSTOR IOL (Alcon Laboratories, Fort Worth [TX], USA) has a central diffractive portion, while ReZoom (Abbott Medical Optics, Inc, Santa Ana [CA], USA) and Tecnis Symfony multifocal lenses (Abbott Medical Optics, Inc, Santa Ana [CA], USA) are examples of multifocal IOL based on refractive principles.

A meta-analysis of peer-reviewed publications demonstrated the effectiveness of multifocal IOL, with a mean spectacle independence of 80.1%. Nonetheless visual complaints after surgery are more common in multifocal than monofocal of accommodation, the effect of optical aberrations may lessen after a period resulting in suboptimal visual quality. With neuroadaptation, sensitivity and the photic phenomenon of halo and glare, independence to 80.1%.

The effectiveness of multifocal IOL, with a mean spectacle variation greatly among individuals.

Accommodating intraocular lenses
To overcome the lack of accommodation in pseudophakic patients and to avoid optical side-effects of multifocal IOL, accommodating IOL have been developed. These are dynamic devices designed to effect a change in optical power in response to contraction of ciliary muscles and axial movement of the optic, thereby restituting the accommodative function of the eye. There are two main types of accommodating IOL: single optic and dual optic.

The single-optic lens was developed first and several models are available, such as Crystalens (Bausch and Lomb Incorporated, Rochester [NY], USA), 1CU (HumanOptics AG, Erlange, Germany), Tetraflex (Lenstec Inc, Florida, USA) and Tek-Clear (Tekia, California, USA). Nonetheless the limitation of single-optic accommodating IOL stems from the small amplitude of excursion that translates into insufficient accommodative power generation to yield adequate and consistent near vision. The accommodative response in eyes implanted with accommodative IOL has been reported to be lower than 0.4D using laser ray tracing aberrometry. Dual-optic accommodating IOL are different in that there are two coaxial optics. They comprise a high-power anterior optic coupled to a compensatory minus posterior optic by a spring system. This maximizes the production of accommodative power by design. Synchrony dual-optic accommodating IOL (Visiogen, Inc, Irvine [CA], USA) and Sarfarazi Elliptical Accommodating IOL (Bausch and Lomb, Rochester [NY], USA) are examples.

Accommodating IOL appear to be an up-and-coming alternative to monofocal or multifocal IOL in achieving spectacle independence, but at present they are still in the nascent stage of development. More large-scale studies of their efficacy and safety are necessary to support a transformation of practice.

Conclusion
With a sound knowledge of the various properties of an IOL, surgeons can discuss with patients the different options, choose the best IOL for their patients, especially in special conditions such as chronic uveitis, and optimize the postoperative visual outcome.

Declaration
All authors have disclosed no conflicts of interest.

References